Chem. Ber. 107, 299 -304 (1974)

Aromatische Sulfenylchloride, IX 1)

Herstellung, Oxidation und spektroskopische Untersuchung von 1-substituierten (5-Tetrazolyl)aryldisulfiden

Géza Stájer, Enikő A. Szahó, János Pintye, Ferenc Klivényi und Pál Sohár*

Pharmazeutisch-Chemisches Institut der Medizinischen Universität Szeged, und Institut für Arzneimittelforschung Budapest *, 1325 Budapest, Ungarn, P. O. B. 82.

Eingegangen am 6. August 1973

Es wurden 1-substituierte (5-Tetrazolyl)mesityldisulfide hergestellt, welche zu Disulfid- S^2 , S^2 -dioxiden (Thiosulfonate) oxidiert wurden. Deren Struktur und die der früher hergestellten 1-substituierten (5-Tetrazolyl)p-tolyldisulfid- S^2 , S^2 -dioxide wurde anhand ihrer IR-und NMR-Spektren wahrscheinlich gemacht. Die angenommenen Strukturen wurden durch Synthese bewiesen.

Aromatic Sulfenyl Chlorides, IX 1)

Preparation, Oxidation, and Spectroscopic Investigation of 1-Substituted 5-Tetrazolyl Aryl Disulfides

1-Substituted 5-tetrazolyl mesityl disulfides were synthesized which on oxidation with hydrogen peroxide gave disulfide S^2 , S^2 -dioxides (thiolsulfonates). The structure of these as well as that of the 1-substituted 5-tetrazolyl p-tolyl disulfide S^2 , S^2 -dioxides synthesized earlier was elucidated by means of their i. r. and n. m. r. spectra. The supposed structures have been established by synthesis.

In unserer früheren Arbeit¹⁾ befaßten wir uns mit der Untersuchung der mittels Sulfenylierung hergestellten 1-substituierten (5-Tetrazolyl)p-tolyldisulfide. Hier beschreiben wir die Herstellung und Strukturbestimmung von 1-substituierten (5-Tetrazolyl)aryldisulfid- S^2 , S^2 -dioxiden.

Zur Herstellung von aromatischen Thiolsulfonaten wird oft die Oxidation mittels Wasserstoffperoxid bzw. Persäure 2--8) verwendet. Die Oxidation von unsymmetrischen Disulfiden führt aber zu einem heterogenen Produkt, da sich immer ein Gemisch der symmetrisch und unsymmetrisch substituierten Thiolsulfonate bildet 3.7). Dies

VIII. Mitteil.: G. Stájer, J. Pintye, F. Klivényi und A. E. Szabó, Acta Chim. Acad. Sci. Hung., im Druck.

²⁾ P. Allen jr. und J. W. Brook, J. Org. Chem. 27, 1019 (1962).

³⁾ D. Barnard und E. J. Percy, Chem. Ind. (London) 1960, 1332.

⁴⁾ L. Field und T. F. Parsons, J. Org. Chem. 30, 657 (1965).

⁵⁾ W. Walter und P. M. Hell, Liebigs Ann. Chem. 727, 35 (1969).

⁶⁾ H. Seigoro, F. Mitsuru, Y. Junko und H. Kimio, Chem. Pharm. Bull. 15, 1310 (1967).

⁷⁾ G. Leandri und A. Tundo, Ann. Chim. (Rome) 44, 63 (1954).

⁸⁾ U. Marangelli, G. Modena und P. E. Todesco, Gazz. Chim. Ital. 90, 1 (1960).

weist darauf hin, daß die Oxidation nicht auf direktem Wege erfolgt, sondern wahrscheinlich über eine Radikalspaltung der primär entstehenden Thiolsulfinate, gefolgt von durch die Sulfinyl-Radikale induzierten Disproportionierungen³⁾.

$$\begin{array}{c} \stackrel{N=N}{RN} \stackrel{N+}{NH} + \text{ClSAr} & \stackrel{-\text{HCl}}{\longrightarrow} \stackrel{N-N}{RN} \stackrel{N-N}{N} & \stackrel{H_2O_2/\text{AcOH}}{\longrightarrow} \stackrel{N=N}{RN} \stackrel{N-N}{N} \\ \stackrel{S}{S} \stackrel{O}{\longrightarrow} \stackrel{N-N}{\longrightarrow} \stackrel{N-N}{N} & \stackrel{N-N}{N} \\ & \stackrel{R}{\searrow} \stackrel{N-N}{\searrow} \stackrel{N-N}{\searrow} \stackrel{N-N}{\searrow} \stackrel{N-N}{\searrow} \\ & \stackrel{R}{\searrow} \stackrel{Ar}{\longrightarrow} \stackrel{Ar}{\longrightarrow} \stackrel{Ar}{\longrightarrow} \stackrel{Ar}{\longrightarrow} \stackrel{Ar}{\longrightarrow} \stackrel{Ar}{\longrightarrow} \stackrel{Ar}{\longrightarrow} \stackrel{N-N}{\longrightarrow} \stackrel{N-N}{\longrightarrow}$$

Die Disulfide 3 wurden aus den entsprechenden 5-Tetrazolthionen 1 mittels Sulfenylchlorid 2 hergestellt und bei Raumtemperatur in Essigsäure mit Wasserstoffperoxid in 40 proz. Ausbeute zu den Thiolsulfonaten 4a-c oxidiert. (Mit Perbenzoesäure wurde eine schlechtere Ausbeute erzielt.)

Die bei der Oxidation der unsymmetrischen Disulfide (A) entstehenden Dioxide können theoretisch den Strukturen B, C oder D entsprechen.

$$R-S-S-R'$$
 $R-SO-SO-R'$ $R-SO_2-S-R'$ $R-S-SO_2-R'$
A B C D

Von diesen konnte der Typ B schon anhand der IR-Daten ausgeschlossen werden, da in den IR-Spektren der Verbindungen 4 die $v_{as}SO_2$ - und v_sSO_2 -Bande, nicht aber die für Sulfoxide charakteristische vSO-Bande auftraten (s. Tab. 2). Die Verbindungen sind also keine Disulfoxide, sondern Sulfonsäurethiolester $^{9-15,16}$.

Im weiteren mußte noch zwischen den Alternativen C und **D** entschieden werden. Für diesen Zweck schienen die NMR-Spektren geeignet zu sein, obwohl *Walter* und *Hell*⁵⁾ anhand des NMR-Spektrums der (2-Pyridyl)*tert*-butyldisulfid- S^1 , S^1 - und S^2 , S^2 -dioxide (C und **D**, R = 2-Pyridyl, R' = *tert*-Butyl) zu der Schlußfolgerung gelangten, daß die Position der Sauerstoffatome wegen der nicht genügend großen Differenz der beiden Spektren ("der magnetischen Anisotropie der Sulfonyl-Gruppe wegen") nicht bestimmt werden kann. Das Methyl-Signal der Verbindung **D** war nämlich im Vergleich zu C nur um 0.07 ppm diamagnetisch verschoben (δ Me (C) = 1.50 ppm, δ Me (D) = 1.43 ppm).

⁹⁾ J. Cymerman und J. B. Willis, J. Chem. Soc. 1951, 1332.

¹⁰⁾ B. G. Boldyrev, L. P. Slesarchuk und T. A. Trofimova, Khim. Seraorg. Soedin., Soderzh. Neftyakh Nefteprod. 8, 108 (1968) [C. A. 72, 54934 n (1970)].

¹¹⁾ G. Ghersetti, Boll. Sci. Fac. Chim. Ind. Bologna 21, 232 (1963) [C. A. 61, 179b (1964)].

¹²⁾ A. Simon und D. Kunath, Z. Anorg. Allg. Chem. 311, 203 (1961).

N. I. Grishko und E. N. Gurjanova, Zh. Fiz. Khim. (J. Physic. Chem.) 32, 2725 (1958)
 [C. A. 53, 13705a (1959)].

¹⁴⁾ S. S. Block und J. P. Weidner, Appl. Spectrosc. 20, 73 (1966).

B. G. Boldyrev, L. P. Slesarchuk, E. E. Gatala, T. A. Trofimova und E. N. Vasenko, Zh. Org. Khim. 2, 96 (1966) [C. A. 64, 14119 d (1966)].

¹⁶⁾ P. Allen jr., P. J. Berner und E. R. Malinowski, Chem. Ind. (London) 1963, 208.

Um die Struktur der Verbindungen bestimmen zu können, untersuchten wir neben den NMR-Spektren von 4b, c auch die der von uns früher hergestellten Verbindungen 4d, $e^{1.17}$). Außerdem wurden auch die NMR-Spektren der Ausgangsverbindungen 3 (Disulfide des Typs A), weiterhin die der Modellverbindungen A (R = Ph, R' = p-Tolyl) 7 , A (R = R' = p-Tolyl), C (R = Ph, R' = p-Tolyl) und C (R = R' = p-Tolyl) herangezogen. Die NMR-Daten sind in der Tab. 1 enthalten.

Tah 1	NMR-Daten	der untersuchten	Verhindungen

Verbindung	Chemisch	e Verschie δNCH3	bungen (pp δC ₆ H ₅		s = 0 ppm Ar
	(3H)	(3H)	(5H)		m (2 H)
A $(R = C_6H_5, R' = p-CH_3C_6H_4)$	2.22, s	_	420 bis 455 Hz, m	7.35a)	7.00 a)
A $(R = R' = p-CH_3C_6H_4)$	2.29, s	_		7.40a)	7.11 =)
C (R = C_6H_5 , R' = p -CH ₃ C ₆ H ₄)	2.23, s	_	~7.5b)	~	7.2c)
C (R - R' = p-CH3C6H4)	2.34, s 2.39, s		_	7.42a) ~7	7.21 a)
$D (R = C_6H_5, R' = p-CH_3C_6H_4)$	2.37, s	_	~7.35 b)	7.44a)	7.20a)
3 b	2.27, sd)	3.87, s		_	6.93, s
3c	2.38, se) 2.27, sf)	_	~7.5₺)	-	6.90, s
3d	2.35, s	3.99, s	_	7.49a)	7.18a)
3e	2.29, s	_	~7.5b)	7.55a)	7.11 a)
4b	2.41, se) 2.35, st)	4.21, s	-		7.02, s
4c	2.48, se) 2.37, st)	-	~7.6₺)		7.00, s
4d	2.47, s	4.21, s	_	7.51a)	7.38 a)
4e	2.50, s	_	~7.6b)	7.71 a)	7.38a)

a) Aus dem AA'BB'-Spektrum mittels AB-Annäherung berechnete Verschiebungen.

Aus den NMR-Daten der Modellverbindungen können folgende Schlußfolgerungen gezogen werden.

- 1. Das Signal der *para*-ständigen Methylgruppe ist in den Dioxiden des Typs C und **D** im Vergleich zu den Disulfiden A paramagnetisch verschoben. Ist die Sulfongruppe dem Ring benachbart, beträgt $\Delta\delta \geqslant 0.1$ ppm, anderenfalls ist $\Delta\delta < 0.05$ ppm.
- 2. Das AA'BB'-Multiplett der Ringprotonen der S-Tolylgruppe ist bei den oxidierten Derivaten in Richtung des A₄-Grenzfalles (Singulett) verschoben, und dieser Effekt ist bei den Verbindungen stärker, bei welchen die Sulfongruppe nicht an den Tolylring gebunden ist. Bei den oxidierten Produkten vermindert sich nämlich die chemische

b) Mehr oder weniger singulettartiges Signal (dem A3-Grenzfall sich annäherndes AA'BB'C-Multiplett).

C) Zentrum des sich dem A₄-Grenzfall annähernden AA'BB'-Multipletts (falls ΔδAB < 0.1 ppm).

d) 2,4,6-Ständige Methylgruppen (9 H). e) 2,6-Ständige Methylgruppen (6 H).

^{1) 4-}Ständige Methylgruppe (3H).

¹⁷⁾ Gevaert Photo-Producten N. V., Belg. Pat. 621 948 (14. 12. 1962) [C. A. 59, 1218 (1963)].

¹⁸⁾ F. Klivényi, Magy. Kém. Foly. 64, 121 (1958) [C. A. 54, 16416e (1960)].

Verschiebung der zur SO₂S-Gruppe ortho-ständigen Ringprotonen — welche im Vergleich zu den Disulfiden A paramagnetisch verschoben sind —, da die durch den anisotropen Effekt dieser Gruppe bedingte diamagnetische Verschiebung größer ist als die entgegengesetzte Wirkung des —I-Effektes. Gleichzeitig werden aber die metaständigen Protonen stärker verschoben, da dort nur der —I-Effekt wirkt. Als Resultat verringert sich daher der Unterschied der chemischen Verschiebung der Ringprotonen. Wir bestätigen die Hypothese von Walter und Hell, daß der anisotrope Effekt der SO₂-Gruppe eine ungefähr gleich große Verschiebung der nahestehenden Protonen bewirkt wie der —I-Effekt, nur eben in entgegengesetzter Richtung (diamagnetisch). Die NMR-Spektren der Modellsubstanzen wiesen aber gleichzeitig auch darauf hin, daß anhand der Signale der Ringprotonen die Möglichkeit gegeben ist, zwischen den isomeren Strukturen C und D zu entscheiden.

Die Beobachtung, daß bei den Verbindungspaaren $3\mathbf{b} - \mathbf{e}$ und $4\mathbf{b} - \mathbf{e}$ das Signal der para-ständigen Methylgruppe um 0.08, 0.10, 0.12 bzw. 0.21 ppm paramagnetisch verschoben ist und bei $3\mathbf{d}$, $\mathbf{e} - 4\mathbf{d}$, \mathbf{e} der Unterschied der chemischen Verschiebung der Tolyl-Ringprotonen mit 0.18 bzw. 0.11 ppm abnimmt, stützt die Richtigkeit der vorgeschlagenen Strukturen.

Bei den mesitylsubstituierten Verbindungen **b** und **c** verschieben sich die Signale der *ortho*-Methylgruppen um 0.14 bzw. 0.10 ppm paramagnetisch, was eine weitere Stütze für die angenommenen Strukturen ist, da gemäß den Angaben von *Walter* und $Hell^{5)}$ bei dem anderen Isomeren eine diamagnetische Verschiebung dieser Signale um 0.20–0.35 ppm auftreten sollte. Es soll erwähnt werden, daß das Signal des I-ständigen Substituenten in den oxidierten Derivaten 4 im Vergleich zu den Disulfiden 3 paramagnetisch verschoben ist: $\Delta\delta Me = 0.34$ (b) und 0.22 ppm (d), $\Delta\delta Ph = 0.1$ ppm (c und e).

Die anhand der NMR-Spektren bestimmten Strukturen 4b und c wurden auch durch Synthesen bewiesen. Die aus 1-Phenyl- bzw. 1-Methyl-5-tetrazolsulfenylchlorid und Mesitylensulfinsäure hergestellten Verbindungen erwiesen sich mit denjenigen identisch, denen aufgrund obiger Überlegungen die Strukturen 4b und c zugeordnet wurden.

Bei der Oxidation der Disulfide 3b und c entstehen also trotz der sterischen Hinderung durch die Methylgruppen S^2 , S^2 -Dioxide — wenn auch in geringerer Ausbeute als bei sterisch nicht gehinderten Derivaten —, obwohl Fälle beschrieben sind 7), in denen bei sterischer Hinderung das nicht gehinderte Schwefelatom oxidiert wird. Dieser Widerspruch kann folgendermaßen erklärt werden. Der elektrophile Angriff der Persäure erfolgt in den Disulfiden des Typs A an dem Schwefelatom, welches von der elektronegativeren Gruppe weiter entfernt ist 7, 19). Im Falle von 3b und c ist die Oxidation des S²-Atomes wegen des starken —I-Effektes des Tetrazolringes viel wahrscheinlicher. Aus der Bildung der Verbindungen 4b und c geht hervor, daß in unserem Falle für die Richtung der Oxidationsreaktion der elektronische Einfluß über den sterischen dominiert.

Neben dem Hauptprodukt 4c der Oxidation wurden durch Dünnschichtchromatographie noch etwa 20% Mesitylenthiosulfonsäure-S-mesitylester und etwa 15% Bis(1-phenyl-5-tetrazolyl)disulfid identifiziert und durch Säulenchromatographie

¹⁹⁾ A. J. Parker und N. Kharasch, J. Amer. Chem. Soc. 82, 3071 (1960).

Tab. 2. 1-Substituierte (5-Tetrazolyl)aryldisulfide (3) und -S2,S2-dioxide (4)

Verbindung	Schmp.	Summenformel (MolMasse)	Analyse C H N	IR (c vasSO ₂	IR (cm ⁻¹)
3b Mesityl(1-methyl-5-tetrazolyl)- disulfid	122—123 *)	C ₁₁ H ₁₄ N ₄ S ₂ (266.4)	Ber. 49.60 5.30 21.04 Gef. 49.80 5.40 21.10	l	1
3c Mesityl(1-phenyl-5-tetrazolyl)-disulfid	107 — 108 *)	C ₁₆ H ₁₆ N ₄ S ₂ (328.5)	Ber. 58.51 4.91 17.06 Gef. 58.61 5.01 17.15	1	i
4a o-Toluolthiosulfonsäure-S- (1-phenyl-5-tetrazolylester)	163 164 (Zers.) **)	C ₁₄ H ₁₂ N ₄ O ₂ S ₂ (332.4)	Ber. 50.58 3.64 16.85 Gef. 50.39 3.86 16.62	1330	1130
4b Mesitylenthiosulfonsäure-S- (1-methyl-5-tetrazolylester)	153—154**)	C ₁₁ H ₁₄ N ₄ O ₂ S ₂ (298.4)	Ber. 44,28 4.73 18.78 Gef. 44.47 4.61 18.68	1340	1150
4c Mesitylenthiosulfonsäure-S- (1-phenyl-5-tetrazolylester)	154—155 (Zers.) **)	C ₁₆ H ₁₆ N ₄ O ₂ S ₂ (360.5)	Ber. 53.31 4.47 15.54 Gef. 53.51 4.37 15.42	1330	1130

*) Aus Benzol/Äthanol/Petroläther (1:1:1).

isoliert. Auch die Bildung dieser Verbindungen spricht für den eingangs erwähnten indirekten, unter Disproportionierung ablaufenden Mechanismus der Disulfid-Oxidation.

Experimenteller Teil

(Die Schmelzpunkte sind nicht korrigiert.)

Die IR-Spektren wurden an KBr-Preßlingen mit einem Spektromom 2000 bzw. Perkin-Elmer 457 Gerät, die NMR-Spektren in CDCl₃-Lösung mit einem Varian A-60 D Spektrometer mit TMS als innerem Standard aufgenommen.

- 1. Sulfenylierung von 1-substituierten 5-Tetrazolthion-Derivaten (1): Disulfide 3: 0.02 mol der Verbindungen 1 (2.3 g 1-Methyl-5-tetrazolthion, 3.6 g 1-Phenyl-5-tetrazolthion) werden in 70 ml Äther in Gegenwart von 1.6 g (0.02 mol) Pyridin unter Rühren mit 3.7 g (0.02 mol) Mesitylensulfenylchlorid bzw. 3.2 g (0.02 mol) o-Toluolsulfenylchlorid, gelöst in 30 ml Äther, versetzt. Darauf wird weitere 15 min gerührt, dann mit Wasser gewaschen, über Natriumsulfat getrocknet und bei Raumtemp, unter vermindertem Druck eingedampft. Der Rückstand (3) kristallisiert beim Stehenlassen. Ausb. 70-80% (Tab. 2).
- 2. Oxidation der 1-substituierten (5-Tetrazolyl) aryldisulfide (3a, b, c): 2 g der Verbindung 3 (im Falle von 3c das bei der Sulfenylierung erhaltene Rohprodukt) in 30 ml Eisessig werden unter Rühren mit einer Lösung von 4 ml 30 proz. Wasserstoffperoxid in 10 ml Eisessig versetzt. Die Reaktionstemperatur darf 20°C nicht übersteigen. Das Gemisch wird 4 h bei 20°C gerührt, über Nacht bei Raumtemp. aufbewahrt, in 100 ml Wasser gegossen und 2 h in den Kühlschrank gestellt. Die ausgeschiedenen Kristalle werden abgesaugt, mit Wasser gewaschen, getrocknet und mit Petroläther gewaschen. Ausb. 4a 0.97 g (44%), 4b 0.85 g (38%), 4c 0.90 g (41%) (Tab. 2).

Aus der Mutterlauge von 4c wurden etwa 20% Mesitylenthiosulfonsäure-S-mesitylester, Schmp. 132–134°C (Lit. ²⁰⁾ Schmp. 133–134°C), und etwa 15% Bis(1-phenyl-5-tetrazolyl)-disulfid, Schmp. 145–146°C (Lit. ²¹⁾ Schmp. 145–148°C (Zers.)), isoliert.

3. Synthese 1-substituierter (5-Tetrazolyl) mesityldisulfid-S²,S²-dioxide (4b, c): 0.02 mol 1-Methyl- bzw. 1-Phenyl-5-tetrazolthion werden in 50 ml wasserfreiem Tetrachlorkohlenstoff chloriert. Das Lösungsmittel wird bei Raumtemp. unter vermindertem Druck abdestilliert und der Rückstand in trockenem Äther mit 3.7 g (0.02 mol) Mesitylensulfinsäure ²²⁾ behandelt. Die ausfallenden Kristalle werden abgesaugt, mit Wasser gewaschen und getrocknet. Ausb. 4b 4.1 g (69%), 4c 4.9 g (68%). Aus Benzol/Äthanol (1:1) werden farblose Nadeln erhalten. Schmp. 4b 153-154°C, 4c 154-155°C (Zers.). Die erhaltenen Produkte erwiesen sich mit den unter 2. beschriebenen oxidierten Derivaten nach Misch-Schmp. und IR-Spektrum als identisch.

²⁰⁾ G. Leandri und A. Tundo, Ann. Chim. (Rome) 44, 255 (1954).

²¹⁾ M. Freund und H. Hempel, Ber. Deut. Chem. Ges. 28, 74 (1895).

²²⁾ E. Knoevenagel und J. Kenner, Ber. Deut. Chem. Ges. 41, 3319 (1908).